Search results for "Cre recombinase"

showing 10 items of 15 documents

Cutting Edge: An IL-17F-CreEYFP Reporter Mouse Allows Fate Mapping of Th17 Cells

2009

Abstract The need for reporter lines able to faithfully track Th17 cells in vivo has become an issue of exceptional importance. To address this, we generated a mouse strain in which Cre recombinase is expressed from the IL-17F promoter. Crossing the IL-17F-Cre allele to a conditional enhanced yellow fluorescent protein (EYFP) reporter mouse yielded the IL-17F-CreEYFP strain, in which IL-17F expression is twinned with EYFP in live IL-17F-expressing cells. Although we demonstrate that IL-17F expression is restricted to CD4+ T cells during experimental autoimmune encephalomyelitis, IL-17F-CreEYFP CD8 T cells robustly expressed IL-17F in response to TGF-β, IL-6, and IL-23. Fate mapping of IL-17…

Yellow fluorescent proteinAdoptive cell transferEncephalomyelitis Autoimmune ExperimentalRNA UntranslatedTransgeneImmunologyCre recombinaseMice TransgenicCD8-Positive T-LymphocytesT-Lymphocytes RegulatoryImmunophenotypingMiceBacterial ProteinsGenes ReporterFate mappingAnimalsHumansImmunology and AllergyCytotoxic T cellCells CulturedIntegrasesbiologyInterleukin-17ProteinsCell DifferentiationAdoptive TransferMolecular biologyPhenotypeIn vitroMice Inbred C57BLLuminescent ProteinsGene Expression RegulationMice Inbred DBAbiology.proteinThe Journal of Immunology
researchProduct

2016

IL-1 is a key cytokine known to drive chronic inflammation and to regulate many physiological, immunological, and neuroimmunological responses via actions on diverse cell types of the body. To determine the mechanisms of IL-1 actions as part of the inflammatory response in vivo, we generated a conditional IL-1 receptor 1 (IL-1R1) mouse mutant using the Cre/LoxP system (IL-1R1(fl/fl) ). In the mutant generated, exon 5, which encodes part of the extracellular-binding region of the receptor, is flanked by LoxP sites, thereby inactivating the two previously described functional IL-1R1 gene transcripts after Cre-mediated recombination. Using keratin 14-Cre driver mice, new IL-1R1 deficient (-/-)…

0301 basic medicineKeratin 14biologyImmunologyMutantCre recombinaseInterleukin-1 receptorbiology.organism_classificationMolecular biologyTrichuris muris03 medical and health sciencesExon030104 developmental biology0302 clinical medicineImmunology and AllergyCre-Lox recombinationReceptor030217 neurology & neurosurgeryEuropean Journal of Immunology
researchProduct

Cannabinoid type-1 receptor signaling in central serotonergic neurons regulates anxiety-like behavior and sociability.

2015

The endocannabinoid (eCB) system possesses neuromodulatory functions by influencing the release of various neurotransmitters, including γ-aminobutyric acid (GABA) and glutamate. A functional interaction between eCBs and the serotonergic system has already been suggested. Previously, we showed that cannabinoid type-1 (CB1) receptor mRNA and protein are localized in serotonergic neurons of the raphe nuclei, implying that the eCB system can modulate serotonergic functions. In order to substantiate the physiological role of the CB1 receptor in serotonergic neurons of the raphe nuclei, we generated serotonergic 5-hydroxytryptamine (5-HT) neuron-specific CB 1 receptor-deficient mice, using the Cr…

CB1 receptorCannabinoid receptormedicine.medical_treatmentCognitive NeuroscienceCre recombinaseBiologySerotonergiclcsh:RC321-571Behavioral Neurosciencemedicinelcsh:Neurosciences. Biological psychiatry. NeuropsychiatryOriginal Researchmusculoskeletal neural and ocular physiologyGlutamate receptorraphe nucleianxietyEndocannabinoid systemserotoninsociabilityNeuropsychology and Physiological Psychologynervous systemlipids (amino acids peptides and proteins)CannabinoidSerotoninRaphe nucleiNeurosciencepsychological phenomena and processesNeuroscienceFrontiers in behavioral neuroscience
researchProduct

Conditional transgenic mouse models: from the basics to genome-wide sets of knockouts and current studies of tissue regeneration

2008

Many mouse models are currently available, providing avenues to elucidate gene function and to recapitulate specific pathological conditions. To a large extent, successful translation of clinical evidence or analytical data into appropriate mouse models is possible through progress in transgenic or gene-targeting technology. Beginning with a review of standard mouse transgenics and conventional gene targeting, this article will move on to discussing the basics of conditional gene expression: the tetracycline (tet)-off and tet-on systems based on the transactivators tet-controlled transactivator (Tta) and reverse tet-on transactivator (rtTA) that allow downregulation or induction of gene exp…

GeneticsEmbryologyReporter geneGenomeTransgeneBiomedical EngineeringGene targetingCre recombinaseMice TransgenicComputational biologyBiologyMiceGene trappingConditional gene knockoutKnockout mouseAnimalsRegenerationGene knockout
researchProduct

Genetic ablation of mast cells redefines the role of mast cells in skin wound healing and bleomycin-induced fibrosis.

2014

Conclusive evidence for the impact of mast cells (MCs) in skin repair is still lacking. Studies in mice examining the role of MC function in the physiology and pathology of skin regenerative processes have obtained contradictory results. To clarify the specific role of MCs in regenerative conditions, here we used a recently developed genetic mouse model that allows conditional MC ablation to examine MC-specific functions in skin. This mouse model is based on the cell type–specific expression of Cre recombinase in connective tissue–type MCs under control of the Mcpt5 promoter and the Cre-inducible diphtheria toxin receptor–mediated cell lineage ablation by diphtheria toxin. In response to ex…

KeratinocytesPathologymedicine.medical_specialtymedicine.medical_treatmentCellCre recombinaseMice TransgenicDermatologyBiologyBleomycinBiochemistrySkin Diseaseschemistry.chemical_compoundBleomycinMiceFibrosismedicineLeukocytesAnimalsMast CellsMolecular BiologyDiphtheria toxinSkin repairWound HealingAntibiotics AntineoplasticGranulation tissueCell BiologyAblationmedicine.diseaseFibrosisDisease Models Animalmedicine.anatomical_structurechemistryGranulation TissueThe Journal of investigative dermatology
researchProduct

Catchup: a mouse model for imaging-based tracking and modulation of neutrophil granulocytes

2015

Neutrophil granulocyte biology is a central issue of immunological research, but the lack of animal models that allow for neutrophil-selective genetic manipulation has delayed progress. By modulating the neutrophil-specific locus Ly6G with a knock-in allele expressing Cre recombinase and the fluorescent protein tdTomato, we generated a mouse model termed Catchup that exhibits strong neutrophil specificity. Transgene activity was found only in very few eosinophils and basophils and was undetectable in bone marrow precursors, including granulomonocytic progenitors (GMPs). Cre-mediated reporter-gene activation allowed for intravital two-photon microscopy of neutrophils without adoptive transfe…

MaleProgrammed cell deathGenotypeNeutrophilsTransgeneMedizinCre recombinaseMice TransgenicPeritonitisBiologyBiochemistryMiceCell MovementAnimalsAntigens LyTransgenesMolecular BiologyMice KnockoutCell DeathGene Transfer TechniquesCell BiologyCell movementMolecular biologyMice Inbred C57BLGene Expression RegulationFemaleReactive Oxygen SpeciesBiotechnologyNature Methods
researchProduct

Increased Motor-Impairing Effects of the Neuroactive Steroid Pregnanolone in Mice with Targeted Inactivation of the GABAA Receptor γ2 Subunit in the …

2016

Endogenous neurosteroids and neuroactive steroids have potent and widespread actions on the brain via inhibitory GABAA receptors. In recombinant receptors and genetic mouse models their actions depend on the α, β, and δ subunits of the receptor, especially on those that form extrasynaptic GABAA receptors responsible for non-synaptic (tonic) inhibition, but they also act on synaptically enriched γ2 subunit-containing receptors and even on αβ binary receptors. Here we tested whether behavioral sensitivity to the neuroactive steroid agonist 5β-pregnan-3α-ol-20-one is altered in genetically engineered mouse models that have deficient GABAA receptor-mediated synaptic inhibition in selected neuro…

0301 basic medicineGAMMA-2-SUBUNITCerebellumNeuroactive steroidcerebellumDISORDERSPurkinje cellINHIBITIONBiologyPharmacologyGABAA-rho receptor03 medical and health scienceschemistry.chemical_compound0302 clinical medicineCRE RECOMBINASE EXPRESSIONmedicinePharmacology (medical)Pharmacology & PharmacyReceptorPARVALBUMIN-POSITIVE INTERNEURONSIN-VIVOOriginal ResearchPregnanolonePharmacologyScience & TechnologyGABAA receptorAllopregnanolonelcsh:RM1-950POINT MUTATIONA RECEPTORS3. Good health030104 developmental biologymedicine.anatomical_structurelcsh:Therapeutics. Pharmacologychemistrynervous systemPurkinje cellsALLOPREGNANOLONEextrasynaptic GABAA receptorsmotor performance1115 Pharmacology And Pharmaceutical Sciences3111 BiomedicineneurosteroidsLife Sciences & Biomedicine030217 neurology & neurosurgeryextrasynaptic GABA(A) receptors
researchProduct

IRF8 Transcription Factor Controls Survival and Function of Terminally Differentiated Conventional and Plasmacytoid Dendritic Cells, Respectively

2016

International audience; Interferon regulatory factor-8 (IRF8) has been proposed to be essential for development of monocytes, plasmacytoid dendritic cells (pDCs) and type 1 conventional dendritic cells (cDC1s) and remains highly expressed in differentiated DCs. Transcription factors that are required to maintain the identity of terminally differentiated cells are designated `' terminal selectors.'' Using BM chimeras, conditional Irf8(fl/fl) mice and various promotors to target Cre recombinase to different stages of monocyte and DC development, we have identified IRF8 as a terminal selector of the cDC1 lineage controlling survival. In monocytes, IRF8 was necessary during early but not late d…

0301 basic medicineT-LymphocytesCellular differentiationImmunologyCre recombinasePlasmacytoid dendritic cellBiologyMonocytesMice03 medical and health sciences0302 clinical medicineInterferonmedicineAnimalsImmunology and AllergyPromoter Regions GeneticMonocyteCell DifferentiationDendritic CellsDendritic cellCell biologyMice Inbred C57BL030104 developmental biologyInfectious Diseasesmedicine.anatomical_structureInterferon Regulatory FactorsInterferon Type ICancer research[SDV.IMM]Life Sciences [q-bio]/ImmunologyIRF8Transcription Factors030215 immunologyIRF4medicine.drugImmunity
researchProduct

A binary genetic approach to characterize TRPM5 cells in mice

2015

International audience; Transient receptor potential channel subfamily M member 5 (TRPM5) is an important downstream signaling component in a subset of taste receptor cells making it a potential target for taste modulation. Interestingly, TRPM5 has been detected in extra-oral tissues; however, the function of extra-gustatory TRPM5-expressing cells is less well understood. To facilitate visualization and manipulation of TRPM5-expressing cells in mice, we generated a Cre knock-in TRPM5 allele by homologous recombination. We then used the novel TRPM5-IRES-Cre mouse strain to report TRPM5 expression by activating a tau GFP transgene. To confirm faithful coexpression of tau GFP and TRPM5 we gene…

MalePhysiologytaste papillaegene targetingBehavioral NeuroscienceMice0302 clinical medicineTaste receptor[SDV.IDA]Life Sciences [q-bio]/Food engineeringGene Knock-In TechniquesIn Situ Hybridization Fluorescence0303 health sciencestaste budsiresGene targetingrosa26ImmunohistochemistrySensory SystemsCell biologyknock inmedicine.anatomical_structuretrpm5taste receptor cellsFemaleGenotypeTransgeneCre recombinaseTRPM Cation ChannelsMice TransgenicBiologyAntibodiestgfpseptal organ of masera03 medical and health sciencesOlfactory MucosaTonguemicrovillar cellsPhysiology (medical)Gene knockinmedicineAnimals[SPI.GPROC]Engineering Sciences [physics]/Chemical and Process EngineeringTRPM5cre recombinaseAlleles030304 developmental biologyPalateMice Inbred C57BLvomeronasal organolfactory epitheliumgastrointestinal tractHomologous recombinationOlfactory epithelium030217 neurology & neurosurgery
researchProduct

A Cre-inducible diphtheria toxin receptor mediates cell lineage ablation after toxin administration.

2004

A new system for lineage ablation is based on transgenic expression of a diphtheria toxin receptor (DTR) in mouse cells and application of diphtheria toxin (DT). To streamline this approach, we generated Cre-inducible DTR transgenic mice (iDTR) in which Cre-mediated excision of a STOP cassette renders cells sensitive to DT. We tested the iDTR strain by crossing to the T cell- and B cell-specific CD4-Cre and CD19-Cre strains, respectively, and observed efficient ablation of T and B cells after exposure to DT. In MOGi-Cre/iDTR double transgenic mice expressing Cre recombinase in oligodendrocytes, we observed myelin loss after intraperitoneal DT injections. Thus, DT crosses the blood-brain bar…

Genetically modified mouseCell SurvivalTransgeneT cellT-LymphocytesCellCre recombinaseApoptosisMice TransgenicReceptors Cell SurfaceBiologyBiochemistryCell LineMicemedicineAnimalsCell LineageDiphtheria ToxinReceptorMolecular BiologyDiphtheria toxinIntegrasesCell DifferentiationCell BiologyMolecular biologyRecombinant ProteinsOligodendrogliamedicine.anatomical_structureCell cultureIntercellular Signaling Peptides and ProteinsBiotechnologyHeparin-binding EGF-like Growth FactorNature methods
researchProduct